

PLCC Series

ET-5050X-3F1W Warm White Datasheet

Ultra high luminous efficacy, combined with the flexibility in design due to its slim and miniature size, PLCC LED Series are optimized to be used as lighting for building

Features:

- High luminous Intensity and high efficiency
- Based on InGaN / GaN technology
- Wide beam angle: 120°
- Excellent performance and visibility
- Suitable for all SMT assembly methods
- IR reflow process compatible
- Environmental friendly; RoHS compliance
- High color rendering index

Typical Applications

- Signal and Symbol Luminaire
- Indoor and Outdoor Displays
- Backlighting (illuminated advertising, general lighting)
- Interior Automotive Lighting

Table of Contents

Product Nomenclature	3
Environmental Compliance	3
LED Package Dimension and Polarity	4
Absolute Maximum Ratings	5
Luminous Intensity Characteristic	5
Forward Voltage Characteristic	6
Color Temperature Characteristic	6
JEDEC Information	7
Reliability Test Items	8
Color Spectrum and Radiation Pattern	9
Optical and Electrical Characteristics	10
Product Soldering Instruction	11
Reflow Profile	12
Product Packing Information	13
Precaution for Use	
Forward Voltage Ranks	16
Luminous Intensity Ranks	16
CIE Chromaticity Diagram	17
Color Bin	18

Product Nomenclature

The following table describes the available color, power, and lens type. For more flux and forward voltage information, please consult the Bin Group document.

$$\frac{E T}{x_1} - \frac{5050}{x_2} \frac{X}{x_3} - \frac{3}{x_4} \frac{F}{x_5} \frac{1}{x_6} \frac{W}{x_7}$$

X1 LED ltem	X2 Package Type	Emit	X3 ting Color	X4 Chip Qu		X5~X6 Serial No.	Fe	X7 eature
Code Type	Code Type	Code	Туре	Code	Туре		Code	Type
ET Edison Top LED	3528 3.5x2.8m	m W	Cool White	1	1pcs		W	White surface
	5050 5.0x5.0m	m H	Neutral White	3	3pcs		В	Black surface
		Χ	Warm White	Α	0.5W			
		R	Red	В	1W			
		Α	Amber(615nm)					
		Υ	Yellow(590nm)					
		Т	True Green					
		В	Blue					
		RTB	RGB 3chips					

Figure 1. PLCC 5050 series Nomenclature

Environmental Compliance

PLCC 5050 series are compliant to the Restriction of Hazardous Substances Directive or RoHS. The restricted materials including lead, mercury cadmium hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ether (PBDE) are not used in PLCC 5050 series to provide an environmentally friendly product to the customers.

LED Package Dimension and Polarity

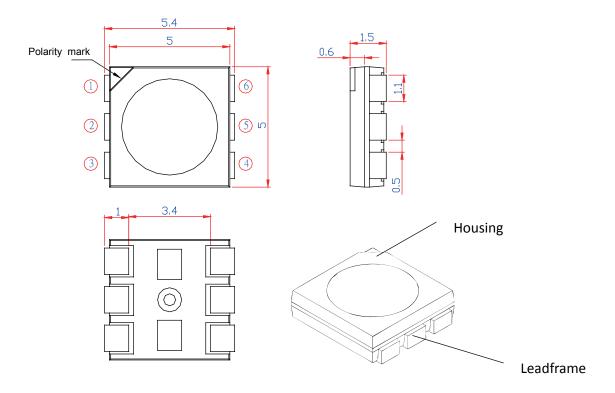


Figure 2. PLCC 5050 series Dimension

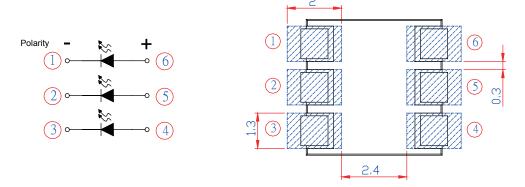


Figure 3. PLCC 5050 series circuit diagram

- 1. All dimensions are measured in mm.
- 2. Tolerance : \pm 0.2 mm

Absolute Maximum Ratings

The following table describe absolute maximum ratings of PLCC 5050 series.

Table 1. Absolute maximum ratings for PLCC 5050 series (per chip)

Parameter	Rating	Units	Symbol
Forward Current	30	mA	I _F
Pulse Forward Current (tp≤100μs, Duty cycle=0.25)	100	mA	
Reverse Voltage	5	V	V_R
Forward Voltage	3.8	V	V_{F}
Power Dissipation	115	mW	
LED Junction Temperature	125	°C	T,
Operating Temperature	-30 ~ +85	°C	
Storage Temperature	-40 ~ +100	°C	
Soldering Temperature	255~260	°C	
Manual Soldering at 350°C(Max.)	3	Sec	

Notes:

- 1. Above values are based on 1-chip performance.
- 2. Proper current derating must be observed to maintain junction temperature below the maximum at all time.
- 3. LEDs are not designed to be driven in reverse bias.
- 4. tp: Pulse width time

Luminous Intensity Characteristic

The following table describes luminous intensity of PLCC 5050 series.

Table 2. Luminous intensity characteristic at $I_{\scriptscriptstyle F}$ =20mA/chip and $T_{\scriptscriptstyle a}$ =25°C for PLCC 5050 series

Part Name	Color	Lumino	us intensit	y(mcd)	Luminous Flux
rarename	Color	Min.	Тур.	Max.	Typ.(lm)
ET-5050X-3F1W	Warm White	4,000	4,600		13.8

Luminous intensity is measured with an accuracy of $\pm~10\%$

Forward Voltage Characteristic

The following table describes forward voltage of PLCC 5050 series.

Table 3 . Forward voltage characteristic at $I_F\!\!=\!\!20mA/chip$ and Ta=25°C for PLCC 5050

Part Name	Color	V_{F}			Unit
rait Name	Color	Min.	Тур.	Max.	Offic
ET-5050X-3F1W	Warm White	2.8		3.8	V

Forward Voltage is measured with an accuracy of $\pm 0.1 V$

Color Temperature Characteristic

The following table describes forward voltage of PLCC 5050 series

Table 4 . Color Rendering Index Characteristics at T_J =25°C for PLCC 5050 series

Doub Nove o	Calar	CRI
Part Name	Color	Тур.
ET-5050X-3F1W	Warm White	80

Note:

CRI is measured with an accuracy of ± 5

JEDEC Information

JEDEC is used to determine what classification level should be used for initial reliability qualification. Once identified, the LEDs can be properly packaged, stored and handled to avoid subsequent thermal and mechanical damage during the assembly solder attachment and/or repair operation. The present moisture sensitivity standard contains six levels, the lower the level ,the longer the devices floor life. PLCC 5050 series are certified at level 2a. This means PLCC 5050 series have a floor life of 4 weeks before PLCC 5050 series need to re-baked.

Table 5. JEDEC characteristics for PLCC 5050

	Floor Life Soak Requirements					
Level	Time	Conditions	Stan	dard	Accelerated Environment	
	Time		Time (hours)	Conditions	Time (hours)	Conditions
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH

	Floor Life		Soak Requirements					
Leve			Stan	dard	Accelerated Environment			
	Time	Condition	Time (hours)	Condition	Time (hours)	Condition		
1	Unlimited	≤30°C /85% RH	168 +5/-0	85°C/85% RH				
2	1 year	≤30°C /60% RH	168 +5/-0	85°C/60% RH				
2a	4 weeks	≤30°C /60% RH	696 ¹ +5/-0	30°C/60% RH	120 +1/-0	60°C/60% RH		
3	168 hours	≤30°C /60% RH	192 ¹ +5/-0	30°C/60% RH	40 +5/-0	60°C/60% RH		
4	72 hours	≤30°C /60% RH	96 ¹ +5/-0	30°C/60% RH	20 +5/-0	60°C/60% RH		
5	48 hours	≤30°C /60% RH	72 ¹ +5/-0	30°C/60% RH	15 +5/-0	60°C/60% RH		
5a	24 hours	≤30°C /60% RH	48 ¹ +5/-0	30°C/60% RH	10 +5/-0V	60°C/60% RH		
6	Time on tabel (TOL)	≤30°C /60% RH	TOL	30°C/60% RH				

The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag, and includes the maximum time allowed out of the bag at the distributor's facility.

Reliability Test Items

The following table describes operating life, mechanical, and environmental tests performed on PLCC 5050 series.

Table 6. Reliability Test 1

Stress Tes	Stress Conditions	Stress Duration	Failure Criteria
Temperature and Humidity	60°C / 60%RH	120 hours	No catastrophics
IR Reflow	Peak temp.=255~260°C*3 times	3 times	No catastrophics

Table 7. Reliability Test 2

Stress Tes	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life	25°C, $I_F = \text{max DC (Note 2)}$	1000 hours	
High Temperature and high Humidity Life	85°C / 85%RH, I _F = 5 mA	1000 hours	
Low Temperature Storage	-40°C	1000 hours	
High Temperature and high Humidity Storage	85°C / 85%RH	1000 hours	No catastrophics
Ambient Temperature Life	25° C, I_{F} = 20 mA	1000 hours	
Temperature Cycle	-40°C/100°C ,30 min dwell <15min transfer	200 cycles	
Thermal Shock	-40°C / 100°C, 15 min dwell <10 sec transfer	200 cycles	-

- 1. Reliability test 2 is performed after reliability test 1.
- 2. Depending on the maximum derating curve.
- 3. Failure Criteria:

Electrical failures

 $V_F Shift >= 10\%$

Luminous Intensity

 I_v Decay>= 35%

Color Spectrum and Radiation Pattern

• Beam Angle Characteristic

Table 8. Beam angle Characteristic for PLCC 5050 series

Part Name	Color	20½(Typ.) Lambertian	Unit
ET-5050X-3F1W	Warm White	120	Deg.

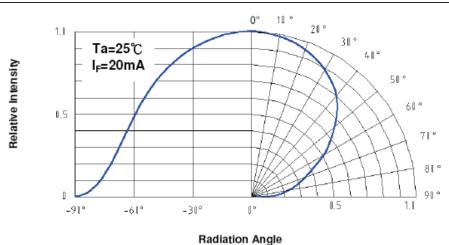


Figure 4. Beam pattern diagram for PLCC 5050 series

• Color Temperature or Dominant Wavelength Characteristics

Table 9. Dominant Wavelength or Peak wavelength or Color Temperature Characteristics at Ta= 25° C for PLCC 5050 series

Part Name	Color	CC	Unit	
rait Name	Coloi	Min.	Max.	Offic
ET-5050X-3F1W	Warm White	2,670	3,800	К

Note:

Color Temperature is measured with an accuracy of \pm 200K

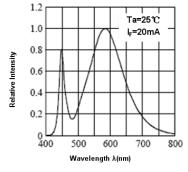


Figure 5. Wavelength & relative intensity for PLCC 5050 series

Optical and Electric Characteristics

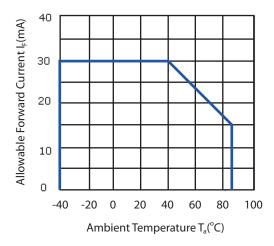


Figure 6. Ambient temperature & forward current for PLCC 5050 series

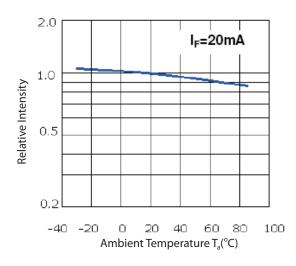


Figure 8. Ambient temperature & relative intensity for PLCC 5050 series

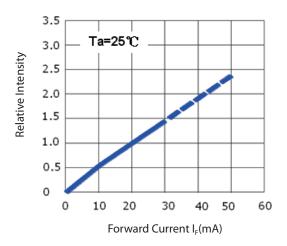


Figure 7. Forward current & relative intensity for PLCC 5050 series

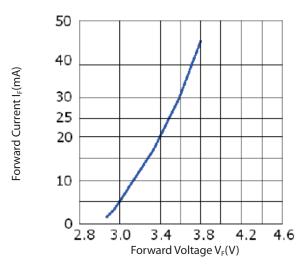


Figure 9. Forward current & forward voltage for PLCC 5050 series

Product Soldering Instructions

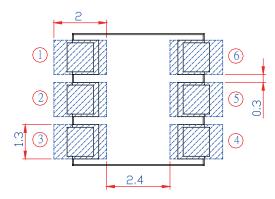


Figure 10. Pad Dimension

All dimensions are measured in mm.

Reflow Profile

The following reflow soldering profiles are provided for reference. It is recommended that users follow the recommended soldering profile provided by the manufacturer of the solder paste used

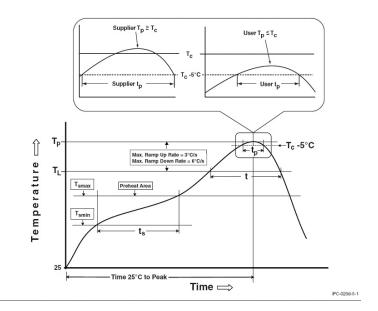


Figure 11. Reflow Profiles Table 10. Table of Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	100°C 150°C 60-120 seconds	150 °C 200 °C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3 °C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak package body temperature (Tp)*	230 °C ~235°C *	255 °C ~260 °C *
Classification temperature (Tc)	235°C	260 °C
Time (tp)** within 5 °C of the specified classification temperature (Tc)	20** seconds	30** seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.	6°C/second max.
Time 25°C to peak temperature	6 minutes max.	8 minutes max.

^{*} Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Product Packaging Information

Taping Reel

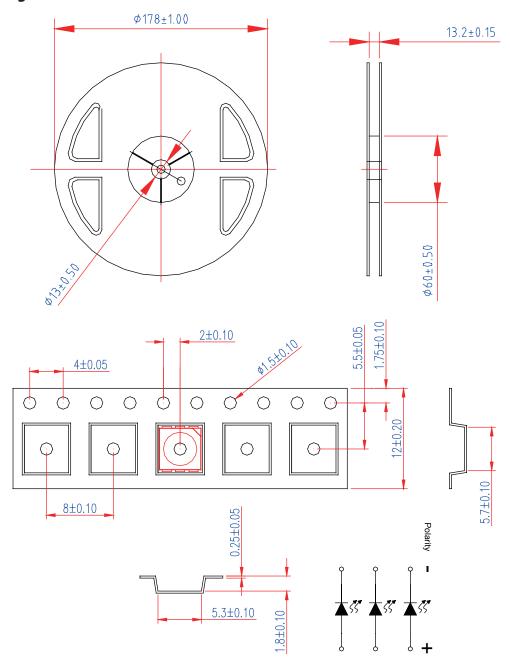


Figure 12. Taping reel dimensions

Packaging

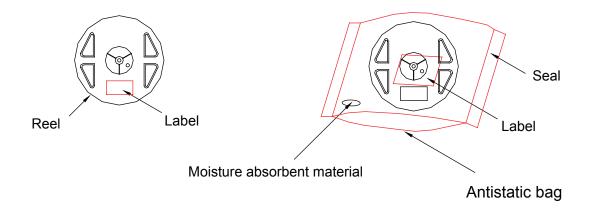


Figure 13. Packaging diagram

Package Label

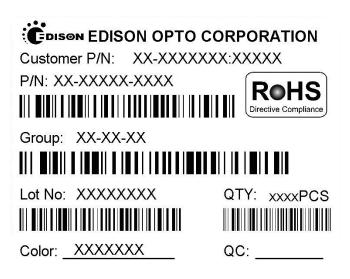


Figure 14. Package label

Table 11. Package dimensions and quantity

		<u>'</u>	
ltem	Quantity	Total	Dimensions(mm)
Reel	1,000pcs	1,000pcs	Diameter=178
Вох	5 reels	5,000pcs	240*235*67
Carton	10 boxes	50,000pcs	500*260*355

Precaution for Use

Storage

1.1 Before opening the package

The LEDs should be kept at $<40^{\circ}$ C & <90%RH. The LEDs should be used within a year. When storing the LEDs, moisture proof package with absorbent material (silica gel) is recommended.

1.2 After opening the package

The LEDs should be kept at $<=30^{\circ}$ C & <=60%RH. The LEDs should be soldered within 4 weeks after opening the moisture proof package.

If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with moisture proof package within absorbent material (silica gel). It is also recommended to return the unused LEDs to the original moisture proof package and to seal the moisture proof package again.

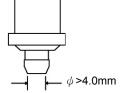
If the moisture absorbent material (silica gel) vapors or expires the expiration date, baking treatment should be performed by using the following conditions: 60°C for 20 hours.

The LEDs electrode and leadframe comprise a silver plated copper alloy. The silver surface may be affected by environments. Please avoid conditions which may cause the LEDs being corroded or discolored. The corrosion or discoloration might lower solderability or affect optical characteristics.

Please avoid rapid transition in ambient temperature, especially in high humidity environments where condensation can occur.

Static electricity

The products are sensitive to static electricity and highly taken care when handling them.


Static electricity or surge voltage will damage the LEDs. It is recommended to wear an anti-electrostatic wristband or an anti-electrostatic glove when handling the LEDs.

All devices, equipments and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.

Pick and Place

Recommended conditions: Outer nozzle>ψ4.0 mm

*Avoid direct contact to the encapsulant with picking up nozzle. Failure to comply might result in pick and place processes or damage to encapsulant. In the worst cases, catastrophic failure of the LEDs due to wire deformation and/or breakage.

Notes:

All the information published is considered to be reliable. However, EDISON OPTO does not assume any liability arising out of the application or use of any product described herein.

EDISON OPTO reserves the right to make changes at any time without notice to any products in order to improve reliability, function or design.

EDISON OPTO products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of EDISON OPTO.

Forward Voltage Ranks

Table 12. Forward voltage rank at Ta=25°C

Bin	Condition	Min	Max	Unit
UJ		2.8	3.0	
UK		3.0	3.2	
UL	I _F =20mA/chip	3.2	3.4	V
UM		3.4	3.6	
UN		3.6	3.8	

Note:

Forward voltage measurement allowance is \pm 0.1V.

Luminous Intensity Ranks

Table 13.Luminous intensity rank at Ta=25°C

Bin	Condition	Min	Max	Unit
ZL		2,650	3,250	
ZM		3,250	3,950	
ZN	I _F =20mA/chip	3,950	4,850	mcd
ZO		4,850	5,950	
ZP		5,950	7,250	

Note:

Luminous Intensity Measurement Allowance is $\pm\,10\%$

CIE Chromaticity Diagram

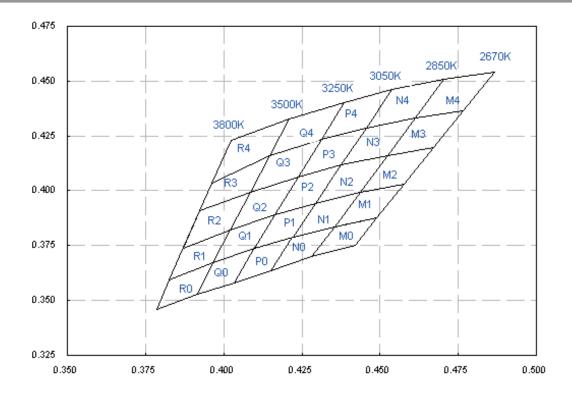


Figure 15. PLCC 5050 series chromaticity diagram

Color Bin

Table 14. Color Bin R0-P4 at I_F =20mA ,Ta=25°C for PLCC 5050 series

Bin	Chromaticity Coordinate				
RO	X	0.3965	0.3916	0.3785	0.3826
KO KO	Υ	0.3672	0.3530	0.3460	0.3595
D1	Χ	0.3870	0.4021	0.3965	0.3826
R1	Υ	0.3739	0.3821	0.3672	0.3595
R2	X	0.3923	0.3870	0.4021	0.4085
NZ	Υ	0.3909	0.3739	0.3821	0.3995
R3	X	0.4085	0.3923	0.3962	0.4147
l vo	Υ	0.3995	0.3909	0.4035	0.4161
R4	Χ	0.4022	0.4209	0.4147	0.3962
114	Υ	0.4227	0.4326	0.4161	0.4035
Q0	Χ	0.4100	0.4035	0.3916	0.3965
Q ⁰	Υ	0.3740	0.3580	0.3530	0.3672
Q1	Χ	0.4164	0.4021	0.4100	0.3965
	Υ	0.3890	0.3821	0.3738	0.3672
Q2	X	0.4085	0.4239	0.4164	0.4021
4-	Υ	0.3995	0.4064	0.3890	0.3821
Q3	X	0.4085	0.4147	0.4311	0.4239
43	Υ	0.3995	0.4161	0.4233	0.4064
Q4	X	0.4384	0.4311	0.4147	0.4209
	Υ	0.4404	0.4233	0.4161	0.4326
PO	X	0.4220	0.4150	0.4035	0.4100
	Υ	0.3790	0.3635	0.3580	0.3740
P1	X	0.4293	0.4221	0.4100	0.4164
	Υ	0.3942	0.3789	0.3738	0.3890
P2	X	0.4239	0.4375	0.4293	0.4164
	Υ	0.4064	0.4116	0.3942	0.3890
P3	X	0.4311	0.4456	0.4375	0.4239
	Υ	0.4233	0.4286	0.4116	0.4064
P4	X	0.4384	0.4538	0.4456	0.4311
	Υ	0.4404	0.4459	0.4286	0.4233

Color coordinates measurement allowance is $\pm\,0.01$

Table 15. Color Bin N0-M4 at I_F =20mA ,Ta=25°C for PLCC 5050 series

Bin	Chromaticity Coordinate				
N0	X	0.4355	0.4280	0.4150	0.4220
	Υ	0.3837	0.3700	0.3635	0.3790
N1	Χ	0.4293	0.4436	0.4355	0.4221
INT	Υ	0.3942	0.3991	0.3837	0.3789
N2	X	0.4375	0.4293	0.4436	0.4525
INZ	Υ	0.4116	0.3942	0.3991	0.4162
N3	X	0.4614	0.4525	0.4375	0.4456
INS	Y	0.4333	0.4162	0.4116	0.4286
N4	Χ	0.4538	0.4705	0.4614	0.4456
	Υ	0.4459	0.4508	0.4333	0.4286
МО	Χ	0.4370	0.4489	0.4420	0.4280
IVIO	Υ	0.3840	0.3875	0.3750	0.3700
M1	Χ	0.4436	0.4576	0.4489	0.4355
1711	Υ	0.3991	0.4028	0.3875	0.3837
M2	X	0.4525	0.4671	0.4576	0.4436
IVIZ	Υ	0.4162	0.4196	0.4028	0.3991
M3	X	0.4614	0.4767	0.4671	0.4525
1413	Y	0.4333	0.4366	0.4196	0.4162
M4	X	0.4705	0.4866	0.4767	0.4614
1714	Υ	0.4508	0.4541	0.4366	0.4333

Note:

Color coordinates measurement allowance is ± 0.01